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Introduction If taxonomical restrictions of Literature Review

Life cycle assessments

into the future®l. Agricultural systems contribute to 26% of green house gas (GHG) emissions?’. With graln SpeC|eS are relaXEd, 1S tLeA > a method_of completing a cradie f? Zgra"e analysis to understand how a system's processes
contribute to environmental phenomena*~>

. . . . . . -
projected rising populations, food supply chains will have increased demand to supply<’. Food systems . Can identify system hotspots, and the production stage is often largest emitter in agriculture>?°

sustainability research aims to address concerns about environmenta| impacts of food supply chains. there a relathnShlp between « To do so, the inputs and outputs of the system are analyzed and then their contribution to impact
categories (e.g. global warming potential, eutrophying emissions, acidifying emissions, pollution,
land use, etc.) are measured

Inputs into the production stage of agriculture include fertilizer, fuel, pesticides, herbicides, electricity,
etc.

Climate change caused by global warming Is a threat to the continuation of current human activities

Life cycle thinking Is often used to assess the sustainability of food supply chains in an effort to identify _ : _
environmental impact hotspots?®. Life cycle assessment (LCA) is an ISO standardized framework to the Cllmate Of graln prOdUCtIOn .
evaluate how the life cycle of a product contributes to impact categories (e.g. GHG, acidifying and

eutrophying emissions, water, land and energy use)!>. LCA is frequently applied to food product life - - -
cycles (e.g. grain, vegetable, meat, fish, beverage production)!>. Stages of the food life cycle (e.qg. and the emissions prOfIIe?
production, processing, transportation, storage, sale, consumption, waste disposal) are analyzed with

. . . g Synthetic analyses
LCAL. Impacts are modeled to provide an estimate of how a food product and its production is y 4

« Use results of LCAs to draw high-level conclusions about food systems’?®

L . . e

contributing to environmental impacts25. Objectives: . Conclusions inform policy decisions?

With any model, there are limitations in its applicability and ability to evaluate uncertainty?3. For LCA as _ _

it pertains to agriculture, there are limitations in methodological variation and geographical ||:|]|:| 1. Explore the pat_terr!s In pmf'!es_ of o

consideration?t: 2324, These become relevant when comparing LCAs of different products, as with the [ substage contribution to emissions System models are limited 1301 o4 3

methodological limitations, comparisons become weakerd21. 2324 The role of geography in LCAs of across grain species. ) I\/_Iocjels_. are limited in ability to _capture_ V\./h()le system_ o . .

grain production is being investigated in an effort to reduce uncertainty in conclusions drawn from D:S’)J 2. Compare profiles within and y ]E'r'l'tat'grl‘?zfgf to methodological variation, data availability, and capturing all environmental

LCASs of grain production. - i - actors . .
between differing geographies. - Result in differences between each LCA study, should be accounted for in synthetic analyses

Problem proposed
« Controlled for production method (conventional only) in grain systems to minimize between-system

LCA Case study criteria®’ Data extraction . variability
. : Analysis « Analyzing the contribution of source emissions to total production stage GHG emissions in terms of
M eth Od S O <i5 fyears oIdI * Global warming potentials (GWP) |] [| . Da?; visualization Globz';l V\?arming Potential (GWP) P 9
. o 1kg functional unit extracted in kg CO2-eq H 1 - - o . . . - .
. . L with proportionall .

f:al.sel S.tudy dsele|Ctl'On . o Quantifying GHGs in GWP . Contribution by substage to total GHG stackrzed pbar grapzs IExpllored patterns within and across geographical regions with a focus on variation due to production

dnc gdsgn and exciusion criteria ‘[ 0@7 using CO2-eq emissions/GWP (e.qg. fertilization, fuel . Compare data gcag £l . heat bar t aui
. See(;rci term for Scopus created o Production stage with use, pesticides, herbicides, etc.) within and across pecies scope of all grains (e.g. wheat, rye, barley, oat, quinoa)
« Case studies selected based o zrt)trr)irlgtﬁ)trifggl sLucl:oitages . Ec?ttiefrgarggosr&rgizg Z?:T?%%Z&%ﬁpned mfa geogr_aphic_and This allowed for the investigation of geography's influence on the contribution of different

on criteria o Conventional production across methodological variations climatic regions source emissions to total production stage GHG emissions from grain LCAs.

b Csa and Csb Climates

Resu‘ts a Cfa and Cfb Climates 100% DISCUSSIOH
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90% I I I L] . After relaxing grain taxonomies and comparing the emissions profiles of
« Fertilizer and 80% I 60% grain production within and between climatic regions (Figure 1), there are
field emissions 70% - I i B 40% some consistently significant drivers of emissions (e.g. fertilizer use and
consistently 60% I I 20% field emissions), but the heterogeneity of agricultural systems and the
contribute 50% 0% variation of LCA methodology makes for high between-system variability and
i . 1lityv3, 12,-14, 30
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(0 compare within _ . _ _ 20% Conclusions & Acknowledgements
and across Australia USAAustralia Italy Australia Czechia Denmark .
climatic regions cf Cta/Cib cth 0% » » » o | . - » * Models such as LCAs remain imperfect, yet they do produce some conclusions
a a o S o & S O s S » Developments required in the consideration of field emissions in agricultural LCAs
- - s = = 8 T 5 s = + Ideally, we would be able to focus LCAs locally while allowing global comparison
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