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Introduction
Climate change caused by global warming is a threat to the continuation of current human activities 

into the future2,11. Agricultural systems contribute to 26% of green house gas (GHG) emissions27. With 

projected rising populations, food supply chains will have increased demand to supply27. Food systems 

sustainability research aims to address concerns about environmental impacts of food supply chains.

Life cycle thinking is often used to assess the sustainability of food supply chains in an effort to identify 

environmental impact hotspots15. Life cycle assessment (LCA) is an ISO standardized framework to 

evaluate how the life cycle of a product contributes to impact categories (e.g. GHG, acidifying and 

eutrophying emissions, water, land and energy use)15. LCA is frequently applied to food product life 

cycles (e.g. grain, vegetable, meat, fish, beverage production)15. Stages of the food life cycle (e.g. 

production, processing, transportation, storage, sale, consumption, waste disposal) are analyzed with 

LCA15. Impacts are modeled to provide an estimate of how a food product and its production is 

contributing to environmental impacts15. 

With any model, there are limitations in its applicability and ability to evaluate uncertainty23. For LCA as 

it pertains to agriculture, there are limitations in methodological variation and geographical 

consideration21, 23-24. These become relevant when comparing LCAs of different products, as with the 

methodological limitations, comparisons become weaker8,21, 23-24. The role of geography in LCAs of 

grain production is being investigated in an effort to reduce uncertainty in conclusions drawn from 

LCAs of grain production. 

Methods

Results

Case study selection
• Inclusion and exclusion criteria 

decided

• Search term for Scopus created

• Case studies selected based 

on criteria

Data extraction 
• Global warming potentials (GWP) 

extracted in kg CO2-eq

• Contribution by substage to total GHG 

emissions/GWP (e.g. fertilization, fuel 

use, pesticides, herbicides, etc.) 

• Data from common substages compiled 

so the case studies are comparable 

across methodological variations 

Analysis
• Data visualization 

with proportionally 

stacked bar graphs 

• Compare data 

within and across 

geographic and 

climatic regions 

Conclusions & Acknowledgements

Figure 1a, b and c  Contributions to total GHG emissions by substage (field emissions, fertilizer, fuels, 

irrigation, lime, etc.) in 3 climatic regions: Cfa and Cfb (a), Csa and Csb (b), and BSk (c) representing 

results from LCAs of grain production occurring in Australia, USA, Italy, Czechia, Denmark, Spain and 

Iran. Climate was determined by farm location and using the Köppen−Geiger Climate Classification map1, 

4-6, 9-10, 16-20, 22, 25, 26, 28, 31-33

.

Discussion

LCA Case study criteria27

o <15 years old
o 1kg functional unit 
o Quantifying GHGs in GWP 

using CO2-eq
o Production stage with 

appropriate substages
o Attributional LCA
o Conventional production
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Objectives:

1. Explore the patterns in profiles of 

substage contribution to emissions 

across grain species.

2. Compare profiles within and 

between differing geographies.
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• Fertilizer and 

field emissions

consistently 

contribute 

significantly, 

averaging 47 and 

45%, respectively

• Only 36% of the 

studies included 

an analysis of 

field emissions 

in their LCA

• It is challenging

to compare within 

and across 

climatic regions

• Grain species 

does or does not 

affect the 

subsystem 

contribution
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If taxonomical restrictions of 

grain species are relaxed, is 

there a relationship between 

the climate of grain production 

and the emissions profile?

After relaxing grain taxonomies and comparing the emissions profiles of 

grain production within and between climatic regions (Figure 1), there are 

some consistently significant drivers of emissions (e.g. fertilizer use and 

field emissions), but the heterogeneity of agricultural systems and the 

variation of LCA methodology makes for high between-system variability and 

low comparability3, 12,-14, 30. 

System boundaries 
30Agricultural 

heterogeneity 
12-14

Variability in modeling 

methodology3, 26, 30

Within and between-climate variation

• Models such as LCAs remain imperfect, yet they do produce some conclusions

• Developments required in the consideration of field emissions in agricultural LCAs

• Ideally, we would be able to focus LCAs locally while allowing global comparison

• Aggregate work must address the agricultural and methodological variability

I would like to acknowledge the following individuals for their sound advice towards 

and support in the completion of this work: My supervisor, Dr. Peter Tyedmers, class 

instruction, Dr. Melanie Zurba, and my peers in the ESS Honours cohort of 2021. 

Data selection30 

Life cycle assessments 

• LCA is a method of completing a cradle to grave analysis to understand how a system's processes 

contribute to environmental phenomena15,29

• Can identify system hotspots, and the production stage is often largest emitter in agriculture15,29

• To do so, the inputs and outputs of the system are analyzed and then their contribution to impact 

categories (e.g. global warming potential, eutrophying emissions, acidifying emissions, pollution, 

land use, etc.) are measured 

• Inputs into the production stage of agriculture include fertilizer, fuel, pesticides, herbicides, electricity, 

etc.

Synthetic analyses

• Use results of LCAs to draw high-level conclusions about food systems7,8

• Conclusions inform policy decisions27

System models are limited

• Models are limited in ability to capture whole system13,21,24,34

• Limitations due to methodological variation, data availability, and capturing all environmental 

factors13,21,24,34

• Result in differences between each LCA study, should be accounted for in synthetic analyses

Problem proposed 

• Controlled for production method (conventional only) in grain systems to minimize between-system 

variability 

• Analyzing the contribution of source emissions to total production stage GHG emissions in terms of 

Global Warming Potential (GWP)

• Explored patterns within and across geographical regions with a focus on variation due to production 

locale 

• Species scope of all grains (e.g. wheat, rye, barley, oat, quinoa)

This allowed for the investigation of geography's influence on the contribution of different 

source emissions to total production stage GHG emissions from grain LCAs. 

Literature Review

Consistently significant drivers of emissions


